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Abstract

The problem of a tilted flat punch having a rounded edge, and with a sufficiently large angle of tilt for contact to be
lost along the flat face, is considered. A complete solution to the contact problem, within the context of an elastic half-
plane formulation, is derived, including the effects of a shearing force either sufficient or insufficient to cause sliding. The
solution is then modified by making the punch semi-infinite in extent, so as to render it effective as an asymptote useful
in both quantifying fretting damage, and in improving the precision of approximate numerical solutions. The asymp-
tote is then applied to an example problem.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the idealised contact problem shown in Fig. 1. It consists of a punch hav-
ing a flat face, but with a radius, R, present at the ends. The normal load, P, is applied at a distance s’
from the flat-rounded transition point (and with the sign sense indicated), so that the right-hand side of
the punch lifts out of contact lifts out of contact. This means that both edges of the contact itself are
‘incomplete’ in character, and the extent of the contact needs to be quantified. The problem has been stud-
ied for several reasons: first, the geometry itself is very simple in nature. Hence, it yields a closed form
solution, including the contact pressure, p(x), angle of tilt, «, and extent of contact [d,/]. A shearing force,
0, applied in the plane of the contact is then added. Both sliding and partial slip cases (the latter when
|Q| <fP, where f'is the coefficient of friction) is then applied, and the resulting stick-slip regime found,
together with the interior state of stress. Secondly, the problem is of help in understanding the behaviour
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Fig. 1. Flat-rounded tilted punch, and inset, the partial slip regime.

of dovetail roots of gas turbine fan blades, where recently the ‘flat and rounded punch’, symmetrically
loaded, has often been used to represent the dovetail flank contact. Here, we have added the means of
looking at the effects of tilt, imposed by vibrational loading. Lastly, the solution provides a vehicle for
investigating the possibility of generating a semi-infinite flat and rounded, but also tilted asymptotic con-
tact solution, and this is discussed, together with related issues concerning first-order asymptotes to this
solution.

2. Formulation

Fig. 1 shows the problem under consideration. The first question which arises is this; if half-plane the-
ory is to be used in the analysis, which combinations of elastic constants may correctly be permitted in the
solution? This is not an easy question to answer, but the solution to be derived is certainly correct if the
punch is rigid, and the half-plane incompressible. With this assumption the elastic composite compliance,
A, is given by

1

A= (1)
where p is the modulus of rigidity of the half-plane. It is arguable that, providing that the length of punch
remaining in contact is small (/ < R), the solution may also be appropriate when both components have a
finite elasticity, and each body capable of being represented by a half-plane. In this case it is still necessary
to ensure that there is no coupling between the direct and shear components of traction, so that either the
components must be elastically similar, or the interface must be perfectly lubricated (f = 0). With this prov-
ison, in the most general case, we have

7K1+1+K2+1

A= 2
2 2 @
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where «; is Kolosov’s constant (=3 — 4v; where v; is Poisson’s ratio for body i), and u; the corresponding
modulus of rigidity.

The punch is pressed into an elastic half-plane. A portion of the rounded section (from x =0 to x =d
say) together with a finite portion (from x = d to x = [ say) of the flat section of the profile indents the half-
plane. The contacting rounded portion is represented by the usual Hertz parabolic approximation to a cir-
cle from x =0 to x = d so the relative surface normal displacement is

(x—d)’
0<
2R’
A+ ax, d<x

o) =3 A x<d 3)

/

NN

where 4 is a constant measuring the absolute indentation. If « = 0 then the punch is ‘flat’, but in any case «
must also be sufficiently small for small strain conventional elasticity theory to apply, which, as with all
elasticity problems of this class, also implies a maximum value for the load, P.

The connection between the displacement and the surface normal pressure, p(x), is

1 dv 1 [ p@
_v__1 AY 4
A ox n/o t—xdz (4)

Differentiating (3) with respect to x and substituting into Eq. (4) gives

L' p(o) g(x)
P =t )
where
x
a+pll1—=), 0<x<d d
ﬂn{ #(1-3) Cp=t )
o, d<x<!
The solution is found in Appendix A, and is given by
X n d
B )x—d [ —x I1—d| /x(I-x) 2d
p(x) = At In - y 7 cos™ (1 7 (7)
I—x \i-d

subject to a consistency condition

1 {ccos‘lc— V1 —cz}

(x_
B

c:l-—2<?>. 9)

In addition to this side condition, overall equilibrium must be satisfied, which provides the following two
requirements:

(8)

|

P:prw (10)
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1
Ps = / p(x)xdx (11)
0
The first of these gives rise to the following relation (see Appendix A.1)
P= B [cos’lc —cV1— cz} (12)
44(1 —¢)

whilst the second gives (see Appendix A.2)

Ps

T 244 l1—c¢

_pP [(1 — ) 4 3eV/T - - 3005101

3. Results
3.1. Contact law and contact pressure

The general characteristics of the form of the solution depend on the two dimensionless quantities (PA4/
R) and (s/R), the first defining the magnitude of the load, the second its point of application. These spec-
ify, using the three auxiliary equations developed above, the size of the contact (d/R),(I//R), together with
the angle of tilt, o . It does not seem possible to solve explicitly for these quantities, but the values of (d/
R),(I//R) may be found by choosing particular values of (d//) and noting what values of the independent
variables are implied. In making use of the results, attention is drawn to the fact that there is only one
fixed reference position in the problem, and that is the transition point from the flat to the rounded part
of the indenter face. Thus, although it is convenient to use the edge of the contact as the origin in deduc-
ing the solution, it makes sense, when considering the output from the analysis, to refer all distances to
the flat/curve transition. Thus, the point of application of the load is now specified as, s'/R (=s/R — d/R,
Fig. 1).

Fig. 2 displays, in various forms, the contact law for the problem. First, Fig. 2(a) gives the ratio d// as a
function of the load position (s'/R) and dimensionless load (PA/R): this quantity is relatively easy to deduce
first. When once this has been done it is then possible to produce the contact law in the required form, and
the results of this are shown in Fig. 2(b). The first point to make is that the dimensionless load has been
capped at 1.0 because a larger value would compromise various aspects of the half-plane idealisation.
For example, the curved part of the profile is represented as a parabola whereas it is, in fact, a part-circle,
and this approximation would certainly be invalid if (d/R) exceeded, say, 0.5. Also, by this stage the amount
of material beyond the contact within the punch is no longer sufficient for it to be thought of as a half-
plane, and so the solution should, in this regime, be thought of as applying solely to the ‘rigid indenter’ case.
Secondly, the distance /'/R gives the extent of the contact along the flat face. Trivially, the solution as de-
scribed applies only when the actual extent of the flat face of the punch is at least as great as this. More
importantly, as ///R — 0 we should recover the Hertz solution. When this condition is achieved we would
expect the solution to be inherently symmetrical, as the straight portion of the boundary has no practical
relevance. Thus, the value of s should be d/2. Further, the contact law for a conventional Hertzian contact
may be written as (Hills et al., 1993):

ﬁ_E@)z
R 2\R
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Fig. 2. (a) Ratio d/I as a function of load and its position; (b) explicit size of contact as a function of load and its position and (c) angle
of tilt, o, as a function of load and its position.

where « is the contact half width. In the present nomenclature, this would mean that d = 2a, and hence

PA  nd* 7s?
R 8R* 2R’
and this line is included in Fig. 2, indicating that the solution developed correctly goes to the Hertzian limit.
The final part of the contact law is the inclination or attitude the punch adopts, «, and this is plotted sepa-
rately in Fig. 2(c). Thus, if s is large the contact becomes almost ‘flat’, whilst as s — d/2 from above o« — n/4.
There are many possible ways in which the general form of the pressure distribution may be displayed.
The most sensible choice seems to be to normalise the contact pressure with respect to the mean load (P//),
but to leave the dimensionless ratio (d//) as the quantity characterising the form of the distribution, (even
though both d and [/ are clearly dependent variables), as this best portrays the range of pressure distribu-
tions which arise. With this choice of normalisation the contact pressure becomes
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Fig. 3 displays the range of contact pressure distributions possible, as a function of d/l. As d/l — 1 the
Hertz semi-ellipse is recovered, whilst as d/I becomes small the effect of the edge radius becomes negligible,
and the problem approximates that of a tilted square ended punch. The limit d// — 0 cannot easily be por-
trayed on this plot, but will be addressed fully when asymptotes are discussed in Section 4.

3.2. Shear tractions

Suppose, now, that a shearing force, Q, is gradually applied. Clearly, if Q = =+ fP, then ¢(x) = + fp(x)
everywhere. However, more interestingly, if the contact is not sliding, and a partial slip regime results
the Ciavarella—Jager theorem (Ciavarella, 1998; Jager, 1998) may be employed, so that by scaling and shift-
ing the sliding shearing traction distribution, to deduce the corrective shearing traction within the stick
region, we arrive at the following solution for the shearing traction distribution (see Fig. 1, inset):

0<x<d
d<x<l—(d-d)-L (15)
l—(d-d)-L<x<l

—fp(x),
—fp(X) + ql(x)7
_fp('x)7

q(x) =
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where
x—(d—-d) d
v—d |VI-G-@-d) Vi-d
— 1n
q/(x):fﬁ(L/l) d \/x—(d—d’) [ d (16)
An L-(x—(d-d) VL-d
Ve —(d— d’))[z/— (r—(d=d)] <1 2;)

with the extent of the stick zone, L, given by

L/l=+/1-0Q/fP (17)
and its position with respect to the reference point (', Fig. 1) given by

d/l=(1-L/D(d]]) (18)

Fig. 4 shows the normalised shear tractions for d// = 0.2 and various values of Q/fP.
3.3. Muskhelishvili potential
We turn, now, to a treatment of the internal state of stress. This is perhaps best represented in terms of a

Muskhelishvili potential, from which the individual stress components can be found by standard means
(Hills et al., 1993). The potential itself is found from the following integral evaluated along the surface

(P(Z):%/Oltpi—t)zdt, z=x+1y (19)
Writing
ZZé(C—i—l), dZé(l—c) (20)
qulEP
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dopi A e
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Fig. 4. Shear traction distributions (d/I = 0.2).
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Fig. 6. Internal stresses for partial slip configurations: (4R\/J3)/I for d/l=0.2, f=0.5 (a) O/fP = 0.2 and (b) Q/fP =0.8.
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we find from Appendix B that
P V1—¢2— (c+ = l)cos‘lc

P(z) = A =0 2+ o)an! (\/i\/%) (21)

We may ignore the constant terms. Now

2z [z (-1 z-1 By 4
(+1== ¢ 1_2(1 1), = Col=pe-))
d 2d  1-c¢ d 2
l+e=2(1-2), 1-c=2, =% = (z— 2
ve=2(1-9) 1-e=F {Ti=tg tre=jE-d) (22)
so that

(z) = ﬁ lZ(z ~ d)tan"! (%ﬁ) /2= Tcos! (1 - ?)] (23)

As a check, the pressure distribution has been successfully evaluated using (23) and applying the Plemelj
formulae (see Appendix C). The closed form solution for partial slip contact configurations has also been
derived by superposition using the results from Ciavarella (1998) and Jager (1998) but it is not reported here
for brevity.

Of course all stress components at any point may be found from this result, but perhaps the best way of
displaying their significance is to look at contours of the von Mises parameter, normalised with respect to
the mean load, i.e. (4R+/J;)/I, and these are shown for representative values of d// in Fig. 5, for frictionless
contact. Space limitations preclude a detailed discussion of the behaviour when frictional tractions are pres-
ent, but a representative solution is shown in Fig. 6, for partial slip configurations when d// =0.2, f=0.5
and Q/fP =0.2,0.8.

4. Asymptotic forms

First, the question arises of the possible application of this solution to develop a second-order asymp-
tote: we have already successfully derived an asymptotic solution for a second-order contact asymptote,
in which one contacting body has the form of a semi-infinite quarter plane, having a local edge radius (Dini
and Hills, 2003). This has been employed to obtain a refined solution to several ‘nearly complete’ contact
problems having only a small edge radius, and it would clearly be very useful if an equivalent solution for a
a tilted semi-infinite rounded punch might be found. However, it is found that, if the limit / — oo is taken
directly, keeping d finite, the value of o goes to zero, so that the non-tilted solution is again approached.’

Notwithstanding this limitation, it has nevertheless proved possible to fit asymptotes within this prob-
lem, and which, we will demonstrate, substantially recover the ‘semi-infinite’ solution required. Starting
from the general equation for the contact pressure (Eq. (7)), we see that, if x < d square root bounded
behaviour is to be anticipated (Dini and Hills, 2004), and this is indeed revealed by expansion of the general
result, to give

! Consider Eq. (7). As I — oo (and therefore ¢ — 1) we get:

B x—d, |Vx+Vd x o
p(x)An{ 7 In \/}7\/3—2 d}’ B*)O.




4998 A. Sackfield et al. | International Journal of Solids and Structures 42 (2005) 4988-5009

p(x) = %ﬁ:osf1 (1 — ?) VX=K)Vx, x<d (24)

Further, if we let the radius of the punch become very small compared with the flat length of the contact
(R < ) we would expect the solution to approximate that of a tilted square ended rigid punch pressed into
an incompressible half-plane. Thus, if we bear in mind also that this form of the solution is valid only if the
punch is rigid, we expect square root singular behaviour in the contact pressure, and indeed this is what is

revealed
28V1 2d
—3'[;\/_0os’l (1 - 7) =
plx) = 28 NG =75 x> dr<iand d (25)
This result is derived in Appendix D. It follows that, if the punch is made extremely wide, and R </ we
can find a range of values of x («/), in which the behaviour of the contact pressure can nevertheless be
thought of as having the form

p(x) = Kyvx+ K] //x (26)

(X3/2 x73/2

(Fig. 7) and with an intermediate region where terms of order O
parison of Egs. (24) and (25) reveals that
KY d
—— (27)
k'3

) are also significant. A com-

while the ‘contact law’, giving the value of d in terms of independent variables is

ARK )\
d= (%) (28)

We now consider the effect of a monotonically increasing shearing force insufficient to cause body
motion (sliding), applied to the asymptotic problem. It will be appreciated that the solution can be found

px)l/P
o
12\ i . __L.___ .. _]—Pressuredistribution|____ .
1 1 i |— Bounded asymptote 1
10 ! ! ! —+ Sngular asymptote !

Fig. 7. Asymptotic expansions for the tilted punch pressure distribution at the edge of the contact: d/l = 0.01.
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by a combination of scaling and shifting of the sliding solution, using the Ciavarella—Jdger theorem, as sta-
ted in Section 3.2 in relation to the corresponding finite problem. It follows that, when the process of taking
the geometric limit L/d — oo is applied to the shear traction distribution, the same trends are found which
appeared for the contact pressure. Thus, the solution for the shear traction for the tilted, semi-infinite flat
and rounded punch is the same as that for the untilted case, which was addressed fully in Dini and Hills
(2003).

This set of results, employed together, may be used to serve in the same way as the ‘flat” semi-infinite flat
and rounded punch does, i.e. it may be used to add detail, viz. the influence of very local rounding, to a
‘perfectly sharp’ punch solution, because the ratio between the singular and bounded asymptotes, and also
the contact law, have all been demonstrated to continue to apply in the tilted punch case.

4.1. Example problem

As it is always possible to fit conventional square root singular asymptotes to pressure and shear into
the corner of a tilted punch, the influence of rounding may be added straightforwardly. In practice we
would expect this procedure to be applied to a complex punch whose contact pressure had been found
numerically but here, for the sake of analytical clarity, we will consider briefly a classical problem as an
example: a rigid punch of half-width b subject to a load P applied at a distance 7 (< b/2 so as to maintain
full contact) from the centreline pressed into an incompressible half-plane, so that it tilts. This gives rise to a
contact pressure

px) = N% [1 + 2;;} . (29)

where, here, x is measured from the punch centreline. It follows that, as x — + b the contact pressure is

square root singular, and, at the end x — b the multiplicative constant defining the contact pressure is given
by

P 2t
k="L_Jiy (_> 30
s 7'[\/2‘5 b ( )
Thus, if the titled punch in question was subject to slight rounding, of radius R, we would infer that,
close to this edge

2t
ap 1+ (=
()

3v2vb(n4R)’

1/3

plx) = Vx (31)

and the solution for the effect of a small amount of rounding has been found without further calculation.
Consider, now, the effect of a monotonically increasing shear, Q. If the contact is fully adhered, the
shearing traction distribution, ¢(x), is given by

9
Vb — x2

regardless of whether the punch is tilted or not, and hence

KT = % \@. (33)

q(x) =
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Complete adhesion will certainly be maintained if |Q|/fP < (1 + 2|¢|/b) and this is what we shall assume.
From Dini and Hills (2003) the size of the slip region, &', is given by

K7 da\*?

—=1-(= 4

o= (3) 4
and hence

d=d|l1-—2 (35)

5. Conclusions

The problem of a punch having the form of a flat face but with rounded edges, pressed into a contact-
ing half-plane, has been solved on the basis of uncoupled half-plane theory. Results for the contact law
and contact pressure distribution have been found, together with the internal state of stress, whether fric-
tionless or sliding, through the Muskhelishvili potential, all in closed form. The effects of a monotonically
increasing shearing force, insufficient to cause sliding have been found, and a detailed consideration of the
asymptotic behaviour undertaken. The last has revealed that, although it is not formally possible to pro-
duce a solution for the tilted semi-infinite punch in a conventional way, it is possible to form an indepen-
dent relationship between the very near edge behaviour and the moderately near edge behaviour, which
serves an equivalent function. This may be used to add rounding detail to the edge of any notionally
sharp contact edge.

Further, it has been shown that the solution for shearing traction distribution for a tilted semi-infinite
flat and rounded punch is the same as that for an untilted punch. The pair of asymptotic solutions has then
been used to solve an example problem, viz. a slightly rounded tilted square-ended finite punch, in complete
contact.
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Appendix A. Details of the inversion of the integral equation

Combining (5) and (6) gives an integral equation for the unknown p(x):

g )

0<x<
* (36)
T t—Xx o, d< <

Most of the standard results for Singular Integral Equations (SIE) are usually couched in terms of inte-
grals over the range [—1, 1] so we transform to this range. Put
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t:é(s+1)<:>sf¥fl (37)
l 2x
Then
torx | sorw
0 -1
d —c
l 1
where
2
c=1_7d, lel<1 (39)
Then
x
1—3:—(1—0)(c+w), (40)
/ dr |/
tfxfi(s—w), Fri) (41)
Then (36) becomes
1 ' P(s) G(w)
— = 42
n/,l s—wds A ( )
where
— 1 — -1<wg -
Gw) = _{ a—Plc+w)/(1—-c), w c 43)
a, —c<w«l

The solution of (42) which is bounded-bounded [the statement of the particular problem here indicates
that p(0) = p(/) = 0 and therefore P(—1) = P(1) =0] is

VI-—w? )/A
P(w) = Y TCI—Y (44)
1 V1I=82(s —w)
subject to the compatibility requirement
' Gls)/4
ds=0 45
-1 V1 —s? (43)

This is evaluated explicitly for the problem to give:

1 {ccos‘c —V1- c2}

%
p n
which has the property that o/f — 0 as / — oo.

1—c¢
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From (44)
Py =~ I_WZ/ ms_ o
:\/l—wz _'a—ﬁ(c+s)/(l—c / L B
An -1 V1 =52 (s — w) m.?7

/ ds — b h cts ds
1 V1 =5 (s—w) L—c )y V1I-s2(s—w)

_ V1I—w2f ¢ (c+s)ds (47)

An(l—c¢) Jo1 V1 —=52(s —w)

as the first integral on the third line above is identically zero. So, using the substitution s — —s in the inte-
gral, we get

VI=w2B ' (c—s)ds

P(W):Aﬂ(l—c) /—1—S2(S+W)
V1—w2f
An(l—c{ er/ \/1—s23+w /\/l—sz}

V1 —wzﬁ

An(l—c {c+w/ P—ﬁl—szs—kw) cosc} (48)

Remember that |w| <1 so that this integral can be CPV (Cauchy Principal Value) or regular depending on
the location of w, ie. if —1 <w < —c¢ then the integral is CPV but if ¢ <w <1 then the integral is
regular.

1
1:/0 T e (49)

Put s = cosf

¢
I:/ L, cosc = ¢ (50)
0

w + cos
Put u = tan(6/2)

2 " du , I+w B ¢
[—I_WA kz_uZ’ k —m, uotan<2> (51)

This is a simple integral which has its CPV value equal to its regular value

k+ul]"* k+ul]"
1 1 1 0<k<
/ kz_uz kglg(}{[nk—u]o +|:n'k—u:|k+a}’ "
1 2k—¢ & k+u I |k+u
2/“‘3&{“ p 2k+8k—u0] 2kn‘k—uo G2
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and this is also the value if k> uy. So
1—|—w+ 1—c

7 — 1 In Vi—w ' Vi+4ec
V1—w? 1+w 1—c

1—w 1+¢

Hence

I+w l-c
b (c+w)ln l—w Lt el T wicos e

~An(l —c¢) 1+w [1—c¢
1—w 1+c¢

1 2d lfc_ d _Zx l+w_ X
CTUTTT Ay =@ "TTU T 1w I—x
, 4 2
l—w —l—zx(l X), c—|—w:7(x—d)
we have
X L d
- _ - - 2
p(x):ﬁx dl l—x / d_\/x( x)oll——d
An d X d d [
I—x Vi—-d

A.1. Applied load P

The applied load is

P= /O/p(x)dx

Making the transformation to [—1, 1] gives

F= é /11 Plw)dw= é /1 {_ \/1;—W2 /11 J%ZA— ) ds}dw’

[ R [ e

ie.

P [ / ' 5G(s)ds
24 Jo V1 =52
Performing an integration by parts gives

p=—gi[-vimvew + [Vimscwal 11

5003

(53)

(59)
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Le.
1
P= —L/ V1 —s2G (s)ds
24 J -

This may be evaluated for the case in question

l1—¢), —-1<s<—c
G/(S) — B/( )
0, —c<s«<1
Note that differentiating G causes the twist dependence to vanish, so P is independent of the twist.

p_{/ w—[ ]ds+/\/— }Mj’*_c ﬁd

= /\/l—szds u51ngs—>—s—L{cvl—cz—cos”c}.
l—c : 44(1 —¢)

Remember that
2d 2d

c=l-——=I=

/ 1-c¢

So

_df|evl—c*—coslc
24 (1-c)?
A.2. Applied moment

Taking moments about x =0 we have
!
M=PFs :/ xp(x)dx.
0
Making the transformation to [—1, 1] gives
ot P r
M= 7 / w4+ DHPw)dw =—+— [ wP(w)dw

1 2 4/,
Now

= [ {7 [ o

SRRy

w—w

1 3
:E‘/, \/l—sz{ _1 \/l—wz(w—s)dw}ds

! TI(W)—T”;(W)
4An/ m“_“{ VT _s>dw}ds

{271: - 4ns2}ds

4A7T Vl-S

1 (s)ds /1 G(s)ds o
N as = 0 (compatibilit
1‘1/_1\/1—s2 1 V1 —s? ( P Y)
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Re-using the compatibility equation we can write this as

/] wP(w)dw :}4 /: V1 —$2G(s)ds

Taking note of (61) we can also write this as
-
M= vl / V1 —52(G(s) — G'(s))ds
-1

but the integral in (70) for our special case is given by

/i V1 —$2G(s)ds = [:C M{—“ + ﬁ(cj;)} ds+ /i VI - (-a)ds

1

1 —c
:—ac/ V1 —s2ds + b V1 —s2(c+s)ds
-1 1

1—c J_

1 1
:—oc/ \/l—szds—l—li/ V1 —s?(c —s)ds, usings— —s
-1 —C J.

_oam B o, 1
_—7+ [Eccos c—g\/(l—cz)—g\/(l—ﬁ)

1-c
and
omzlfc{ccosflc—vl—cz}.
Hence
TRoes = L[y a - € gy <AL=
[ VT=sates = [o Ve - § V=] =B

2 V32
2 44 6(1—c¢)
Substituting (65) in (75) we have
B2 (1 =) +3¢vT = —3cos ¢
M=

l1—c¢

Appendix B. Muskhelishvili’s potential

The Muskhelishvili potential is

!
¢(z)*i/ Mdt, z=x+1y
0

T 2m t—z

5005

(71)

(77)
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Make the substitution
e, =L
) TR

in (77) in order to standardise the interval

1 ' P(s)
@(z)_%lls_cds

and hence
Ps) = VI=$2 1 (c—u)du
An(l —c¢) Jo V1 —u2(u+s)
where ¢ = 1-2d/I. Substituting (80) into (79) gives
L/l 1 {Mﬁ Y (e —u)du }ds
27 J_; s—{ |An(1 —¢) J, M(u—ks)

Interchanging the order of integration

&(z) =

B B l(c—u) U V1 = s2ds
(p(z)72nziA(1—C) c vl—uZ{/ (_C)(”"’S)}du

Note that the inner integral is CPV, also note that

(S—C)l(u—l—s):u—lf—é'(SiCs—lFu)

Hence the inner integral reads

s+u

/1(@@ u+C</ \/—szds /\/—szds

s=0+s)

(84)

Now the first integral on the RHS is regular ({ is a complex number, but s is real) whilst the second is CPV.

They are both easily evaluated using Gladwell (1980) to give

/1 (Sﬁiss)_uicwa_g_m)

Thus

(D(Z)_ZnZiA,(BI—C) | \(/Cl——uu)z{uﬂ%(\/f_c_u)}du

The integrals required here give

' (e —u)du c—I—C 1—c ~ cos-le
¢ \/1—u2(u—|—C) g_ l+c¢ §—|—
: _u(c—u)du — | C—i—c l-c
L Towwrg et Ereeostes Wire z+

(85)

(86)
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Thus
V1—c2— (c + - 1)cos’lc

P(z) = 27I1A£—c) +2( + ¢)tan™! (\/i\/?%)

Appendix C. Validation of the theory using the Plemelj formulae

As a check we may use the Plemelj formulae to re-find p(x) from @(z). If

1 0) .
@ = — =
(2) i /0 = dt z=x+1y

Then, when z lies on the line of integration

1 1 /!
@i(x)::tzp()—FZ/o tpf)dt 0<x<!

which are the Plemelj formulae. So
plx) =27 (x) — @ (x)

Now
@ 20+ et o l=e e g lcos™!
(z) = A= o) + c)tan” e C+ —lcos ¢
Let
w=Re(
Then
( C—1>+:i\/1—w, (VE=T1) =ivi=w,
( C+1)+:\/1+w7 (\/C-i-l)_:—\/l-i-w
So
l—c /1—w
00 -0 () - A (V1+c\/1+w)
2iv1 — w2cos~ !¢
and
P e
tan (1x)—21n1_x
Therefore
M—c /1 —w
plx) = b w+c)l TrcVltw — V1 —w2os ¢

- md(l —c¢) Nl—c 1—-w
T+cVli+w

5007
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Now
w—&-l—% w—l—Z(J—C—l)
T T\ ’
d 2d 1-c
lde=2(1-2), 1—c=22 —— %
e < z)’ TU Txe

So

l—w
1+w

1+ / I —x
p(x):F{gd x—d)l \/l— —
I —d

This agrees with the p(x) already found (7).

Appendix D. Asymptotic expansion

Let us consider the pressure distribution

VITWE [ (c+s

I —x 5

X
d
[—d’

— /x(l —x)cos ‘¢

p(x) = P(w)

Reverting back to the physical parameters

l 2t

[ 2
x:§(w+1)<:>w:7x—1

Then

torx | sorw

0 -1

d —c

{ 1

2d
c:l—T, lcl<1

We have

plx nAd 1 —x /

:An(lfc) VT =82(s—w)

— - dt
Vi( l—t (x—1)

, l—w :i
/

2
w—|—c:7(x—d),

(100)

(101)

(102)

(103)

(104)

(105)

(106)

We are interested in the region d < x <I. So, as 0 <t < d, we have always that r < x. Hence the integral is

regular and we may put

-1 o0 n
=) =20

(107)
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Therefore

" ndd \/7/ \/1—_t,/x d (108)

Thus, retaining the first term only in the summation (because x > > 1)

NnAd\/m/ m (109)

Now
d . 1\/? (d—1)
— ¢ (2d — I)sin -+l —t) p = ——= 110
dt{( Jsin!y 5+ VAl >} s (110)
Therefore
d
()~ S 2a = pysin 4 T D)
P =44 ] )
o ﬁ X .1 d
—d d(l—d)— (I —2d)sin 7 (111)
Note that
4d(1 —d) . d 1
l—szT, sin \/;zzcos e (112)
Therefore also
LB l—=x 5 o
p(x) ~— a3\ [\/1 — % —ccos c] (113)
And finally, since x </ we have
1/2
\/l—x:\/f(l—%c) ~ VI (114)
So
ﬂl3/2 : » 1
) =5 — [\/1 2 — ccos c]\/)_c (115)

which, for d < I (¢ — 1) gives Eq. (25).
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